Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Assuming the Riemann hypothesis, we improve the current upper and lower bounds for the average value of Montgomery’s function F(a,T) over long intervals by means of a Fourier optimization framework. The function F(a,T) is often used to study the pair correlation of the non-trivial zeros of the Riemann zeta-function. Two ideas play a central role in our approach: (i) the introduction of new averaging mechanisms in our conceptual framework and (ii) the full use of the class of test functions introduced by Cohn and Elkies for the sphere packing bounds, going beyond the usual class of bandlimited functions. We conclude that such an average value, that is conjectured to be 1, lies between 0.9303 and 1.3208. Our Fourier optimization framework also yields an improvement on the current bounds for the analogous problem concerning the non-trivial zeros in the family of Dirichlet L-functions.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Draganov, B; Ivanov, K; Nikolov, G; Uluchev, R (Ed.)nspired by a result of Soundararajan, assuming the Riemann hypothesis (RH), we prove a new inequality for the logarithm of the modulus of the Riemann zeta-function on the critical line in terms of a Dirichlet polynomial over primes and prime powers. Our proof uses the Guinand-Weil explicit formula in conjunction with extremal one-sided bandlimited approximations for the Poisson kernel. As an application, by carefully estimating the Dirichlet polynomial, we revisit a 100-year-old estimate of Littlewood and give a slight refinement of the sharpest known upper bound (due to Chandee and Soundararajan) for the modulus of the zeta function on the critical line assuming RH, by providing explicit lower-order terms.more » « less
-
Abstract We study three integrals related to the celebrated pair correlation conjecture of H. L. Montgomery. The first is the integral of Montgomery’s function F ( α , T ) {F(\alpha,T)} in bounded intervals, the second is an integral introduced by Selberg related to estimating the variance of primes in short intervals, and the last is the second moment of the logarithmic derivative of the Riemann zeta-function near the critical line. The conjectured asymptotic for any of these three integrals is equivalent to Montgomery’s pair correlation conjecture. Assuming the Riemann hypothesis, we substantially improve the known upper and lower bounds for these integrals by introducing new connections to certain extremal problems in Fourier analysis. In an appendix, we study the intriguing problem of establishing the sharp form of an embedding between two Hilbert spaces of entire functions naturally connected to Montgomery’s pair correlation conjecture.more » « less
An official website of the United States government

Full Text Available